
....i__I,I,_!

%: L

: :!1:77

):

u !.

7! _i:-

/:

iiL

SOFTWARE PROCESS ASSESSMENT (SPA)

Linda H. Rosenberg, Ph.D.
Unisys Government Systems

10265 Aerospace Drive
Lanham, MD 20706

Abstract

Sylvia B. Sheppard
NASAJGSFC

Code 522

Greenbelt, MD 20771

NASA's environment mirrors the changes taking
place in the nation at large, i.e. workers are being
asked to do more work with fewer resources. For

software developers at NASA's Goddard Space
Flight Center (GSFC), the effects of this change
are that we must continue to produce quality code
that is maintainable and reusable, but we must learn

to produce it more efficiently and less expensively.
To accomplish this goal, the Data Systems
Technology Division (DSTD) at GSFC is trying a
variety of both proven and state-of-the-art
techniques for software development (e.g., object-
oriented design, prototyping, designing for reuse,
etc.).

In order to evaluate the effectiveness of these

techniques, the Software Process Assessment
(SPA) program was initiated. SPA was begun
under the assumption that the effects of different
software development processes, techniques, and
tools, on the resulting product must be evaluated in
an objective manner in order to assess any benefits
that may have accrued. SPA involves the
collection and analysis of software product and
process data. These data include metrics such as
effort, code changes, size, complexity, and code
readability. This paper describes the SPA data
collection and analysis methodology and presents
examples of benefits realized thus far by DSTD's
software developers and managers.

1 Introduction

Effective management of software development
projects requires continual assessment of the
development process and the resulting software
product. The Software Process Assessment (SPA)
program of the Software and Automation Systems
Branch (Code 522) of the Goddard Space Flight

N95- 17569

.¸¸

Scott A. Butler

University of Maryland
Department of Psychology
College Park, MD 20742

Center (GSFC) was established four years ago in
order to promote understanding of our software
development process and to assure the quality of
our software products. For the purposes of this
paper, terms are defined as follows: "software
process" is the set of activities and methods
employed in the production of software;
"measurements" are raw data relating to the
development effort or the software; and "metrics"
are combinations of measurements used to quantify
a software attribute (IEEE-Std-610.12-1990).

SPA's primary objective is to understand the
effects of different life cycles, project domains,
development languages, design methodologies,
and management techniques on resulting software
products. We are interested in developing a
process model that incorporates these issues and
that supports quality assurance and quality control.
At present, our guide for process improvement
involves tracking and analyzing daily activities in
the context of our experiences and lessons learned.
These analyses will benefit on-going projects by
reducing development times, decreasing
development costs, decreasing maintenance costs,
and increasing software reliability (Baumert &
McWhitney, 1992). Future development efforts
will benefit by having a more accurate basis for
predictions about development costs and
schedules.

The fundamental premise of SPA is that metrics
will not be used to evaluate programmers or project
managers. To foster confidence among the
programmers, each programmer and project is
identified by an identification number to maintain
anonymity. Through working closely with SPA

personnel, project managers use the metrics to
improve or evaluate current development
techniques. Guidelines for using the metrics are
being developed to assist managers in interpreting

project results.

? •

1001

5 •

_: !i:!iiI :

i¸

SPA Metrics

I
Process Metrics

I
Personnel

Resources Form

!
Effort

by phase

I
Product Metrics

!
Software Analysis

! i i
Complexity Size

Readability Component
Origination

Form

I
1 I

% Amount

Complete reused

I
Changes
to code

!

!
Type

Change
Report

Form

Date

i
Effort

Figure 1" Measurable Components of the Software Process Assessment

2 SPA Metrics: Process, Product, and Changes

2.1 Process Metrics

SPA involves" the evaluation of process and
product metrics as indicated in Figure 1. To
evaluate process, we focus on the application of
resources, primarily personnel effort. By
understanding how personnel resources are
allocated in different phases, we can begin to
determine how a project applied a particular life
cycle model and the effects that life cycle had on
the allocation of effort. This information can also

assist in determining stability of requirements by
tracking the amount of effort that was devoted to
requirements specification. Requirement
specification should occur in the initial phases of a
project's life cycle; work on requirements later in
the life cycle may indicate instability in the project
definition (Baumert & McWhitney, 1992; Mills &

Dyson, 1990).

2.2 Product Metrics

To evaluate a product, we analyze the software
throughout development and after releases.

Multiple analyses allow comparisons among
releases and allow us to correlate effort metrics to

change data. The frequency of analysis is
determined by development phase and project
manager requests.

Product assessments include metrics such as size,

complexity, and readability (Rombach, 1990). We
obtain these metrics using UX-Metric from SET
Laboratories (Set Laboratories, 1990). UX-Metric

produces McCabe's complexity metrics, counts
GOTOs and comments, and calculates size metrics
(IEEE-Std 1045-1992).

Size metrics refer to line counts, such as total lines

of code (including comments and blank lines) and
executable statements (measured by delimiters).
Because we wish to compare metrics across
different languages, we use executable statements
as opposed to non-comment non-blank lines
(NCNB). Executable statements are least affected

by programmer style (Putnam & Myers, 1992).

Complexity metrics describe the logical structure of
the individual code modules. We are initially
evaluating the structure using McCabe's cyclomatic

1002

) :i i i -:¸--¸: .:

/•

]:

_:_i_ ::i:i
:_:i:!__ili

i!_, i_i:i(i:

i::!i_ i_

:i_ili__i!
; i_iii_z<

!;: _i i

;, :ii!̧

:;;//i!__

i

i__:2

:i_:

!i_i/i

complexity (McCabe, 1976), and the extent of the
use of the GOTO statement (especially in object
oriented design systems) (Booch, 1991). At a later
time, we will include level of nesting, fan in and
fan out.

Readability metrics include the use of comments
and the average length of variable names. Using
comments and meaningful variable names
contributes to the reader's understanding of code.
Readability metrics, as well as complexity metrics,
are cited in the literature as contributing to
understandability of the code, an issue for code
reading during development and for later
maintenance of the code (Putnam & Myers, 1992).

2.3 Changes to Code

Additionally, we track the types of changes made
to the code, when they were made and why they
were made (Baumert & McWhitney, 1992; SEL-
87-008). Errors, usability issues, and
modifications to requirements are all classified as
changes. In short, a change is anything that causes
a modification to the code once it has been

submitted to the project library. Change data are
collected from the time components are entered into
the project library until the completion of the
development effort and, sometimes, throughout the
project maintenance phase. We are also
investigating correlations between the number of
changes per module/file and the code metrics.

3 Data Collection

The data collection process was designed to ensure
that the metrics we collected would be reliable and

relevant, i.e. the data can be used to draw valid
conclusions and to answer specific questions
(Baumert & McWhitney, 1992). The data
collection forms are non-threatening, easy-to-use,
and non-intrusive. All forms are on-line and are

distributed and processed electronically.

SPA uses modified versions of three forms

developed at NASA Goddard's Software
Engineering Laboratory (SEL) (SEL-87-008). The
forms were modified to encompass the range of
activities and interests specific to the DSTD. The
Personnel Resources Form (PRF) provides
information about effort spent m various
development activities. It is completed each week
by all personnel performing either technical or
management activities on a project. These activities

have become an integral part of our software
development process as opposed to mere adjuncts
done at the discretion of the developers.

The Component Origination Form (COF) provides
details about an individual software module. A

COF is completed each time a component is added
to the system library. One area of interest is the
number of components generated "from scratch" as
compared to the number that are reused (or
modified and reused) from the DSTD Reuse
Software Library.

The Change Report Form (CRF) describes a
software change and provides a reason for the
change. A CRF is completed by any person who

implements a change to the system that involves
modifications to components in the project-
controlled source library.

4 Results

SPA data have been collected on over of thirty-five
projects to date. The projects are diverse in
application domain, use the waterfall or
evolutionary prototyping life cycles, and are
written in Ada, C, C++ or FORTRAN. Data for

some projects were collected using the method
described above. In other projects, completed code
was obtained, but no process data were available.

4.1 Resource Analysis

The process data collection has yielded interesting
results. One result is the use of metrics to drive the

development of a process model. Figure 2 shows
the total weekly hours by activity across the
development of a C++ project currently in the third
build. This chart can give management an
indication of staffing requirements and can indicate

the effects of events such as holidays, winter
storms, and design reviews. When data from
several projects of this size and type have been
obtained, we hope to be able to build a model that
will help estimate the staffing requirements for our
specific development environment.

Besides aiding in the development of a planning

profile for staffing, effort data can be used as
feedback for current development efforts. One
measure of the stability of a development process is
the stability of activities within a phase; earlier
phases should be largely completed before
subsequent phases begin. For example, once a

1003

Q,I

Q,I

1,2
Q,i

'l.l.,i
°,),_

o')
o
l=i

I:1
o

l.i,.i
l,i,.i

o

o

i:=l

s_noH

o

[]

o

[]

_0
°_-_

o

o

o

_mo H

u_!sao

ad_o:_o.x d

_adS/letrv

ba8 °_,,.i

o

o

64

FORTRAN Modules

600

500

400

300

200

100

o

m

• m

• mm.m_ • •

• &

0 50 100 150 200

Figure 4: FORTRAN Modules

Extended Cyclomatic Complexity

project has entered the coding phase, requirements-
related activities should have been, for the most

part, completed. In Figure 2, the design activity
that begins on or about 9/3/93, was, in fact, in
preparation for Build 2. Had this redesign been
associated with Build 1, it would have been an
indication of design instability and could have been
costly to implement.

Figure 3 shows data from the same project, but
with a more detailed breakout of life cycle
activities. This graph shows that all requirement
activity was completed in the first build. This is a
good indicator of requirement stability.
Additionally, the large design effort for Build 1
appears to have reduced the need for design in
Builds 2 and 3. According to the project manager,
the more difficult capabilities were added in Build

2, hence a larger amount of system testing was
needed in that build.

4.2 Code Analysis

Code metrics can be used for identifying code that
may be difficult to maintain and for identifying
modules that may need additional testing. Modules
with high complexity and/or large numbers of
executable statements are prime candidates for the
most extensive testing (Set Laboratories, 1990).

These modules also need to be well-commented for

readability (Putnam & Myers, 1992).

Figure 4 shows data for a FORTRAN project.
Each square represents a module of code. This
project contained 906 modules with a total of
75,537 executable statements. Most of the code
was FORTRAN 77, but some was older
FORTRAN IV code. This older code was difficult

to maintain, but funding to rewrite it was not
forthcoming. Figure 4 shows five modules (on the
right-hand side of the graph) to be exceptionally
high in complexity as well as being rather large, as
measured by the number of executable statements.
Further investigation identified those modules as
part of the FORTRAN IV code. Using this chart,
it was argued that code this large and complex was
expensive to maintain, and an overall rewriting of
the code was approved.

For projects currently under development, an effort
is being made to prevent outliers such as the five
that were identified in Figure 4. Analysis of
modules as they are entered into the project library
allows project managers to identify modules that
need more testing, more extensive documentation
and/or division into more manageable components.

1005

Space Ops Paper July 11, 1994 Page 6

Cumulative Changes -- C++ Project

O

600

z!
_. 400

800 Requirements

700

100

0 :Ill:fill',
_ {'N t"q

Design

u ,m

• ? 'm°

I I I I I i I Ii i u i i i i i

Code

m, I

qN,m.•.n,i I,N J'N'i'i l_ll"

|¢

l l I I l l I I I I I I I I I

r _m _m Cm _r_

Week Ending

• Changes _ Errors]

Figure 5: Number of Changes over Time by Development Phase

Test

mm.m,m'm
mm_,

,• •

m m m

4.3 Software Change Analysis

Analyzing software changes can provide
information about the development process as well
as the product, In Figure 5, the black squares
represent the cumulative changes for a C++ project
currently in development. These changes may be
due to planned enhancements, clarifications,
requirements changes, or errors. It is expected that
when this "total" curve levels off, most (if not all)
errors will have been located, and the code will be

ready for release. The white squares represent
changes due to coding errors. In the initial phases,
changes are not due to errors, but by the time of
integration testing, most changes are the result of
errors. Identifying trends such as this one helps us
to allocate resources, both for testing and for error
correction.

5 Discussion

The initial results of the SPA measurement-based

process model are encouraging. We are meeting
our objectives to learn about techniques in applying
the life cycle in different application domains and
with different languages. On the basis of

management interest in the data and its application,
SPA seems to be succeeding in supplying useful
feedback during the development process. The
metrics are also useful in identifying more efficient
software development techniques.

The paragraphs that follow contain examples of
how SPA feedback has helped developers address
issues in the areas of design, training, budget, and
quality.

Example 1: We compared two projects done by
essentially the same personnel. On the first
project, personnel used diagramming for both high
level design and low level design. On the second
project, they used diagramming on only the high
level design and instead wrote class specifications
in C++, the development language. Additionally,
during low-level design for the second project,
they standardized on very structured development
techniques involving object-oriented programming
and specific call-back mechanisms. Comparing
SPA data from the two projects helped to convince
management that the changes in methodology had,
in fact, increased productivity. The new design
methodology will be continued in the future.

1006

ili_iij'_i_•

_i:: •

ii!::

i/.! iii:i '_

HI,

_ilii_I

Example 2: SPA metrics have been used to draw
inferences about training and staffing. Information
on personnel activities is being used to justify the
number of hours allocated to various activities, e.g.
more time spent on training or more time spent
writing requirements/specifications. The analysis
of an Ada project indicated that more time should
have been spent training programmers to use Ada.
The supposition is that if more time had been
allocated early in the development cycle to learning
to program in Ada, the efficiency of the project and
the resulting code would have been improved.

Example 3: Another project we studied had
finished under budget and ahead of schedule. One
supposition for this outcome was that a larger
percentage of civil service personnel had been
added than had been projected or would normally
have been used on a project of this size. (Only
contractors' salaries are included in the cost of a

project, so in a sense civil servants are "free"
labor.) By using PRF data, we were able to
differentiate the number of hours and types of
activities performed by contractors and civil
servants. As a result, management was reassured
that the early completion of the project was, in fact,
due to more efficient development techniques rather
than an excess of civil servants. Because of this

analysis, future projects will adopt these
development techniques.

Example 4: SPA metrics have also been used to
settle questions about code quality. An abbreviated
development schedule caused management to
question the robustness and maintainability of an
application. Using the code metrics, we
demonstrated that the majority of the code met the
standards used at Johnson Space Center, which is
known for its emphasis on software quality.
Further, the metrics were used to argue
successfully that portions of the code were reliable
and maintainable and should not be rewritten.

6 Summary and Future Research

Metrics are often viewed by managers and
programmers as threatening, but for the past four
years they have been successfully collected and
used to evaluate the development process model
and software products in the DSTD at Goddard
Space Flight Center. We attribute this success to
the strict adherence to anonymity of personnel and
projects and to non-intrusive data collection
methods.

1007

Although it is too early to quantify the financial
benefits from these analyses, we have seen process
improvements. For example, the need for training
in object oriented design methods and in
programming languages is determined at the start
of new projects. Design and development
techniques have been structured and formalized.
Different testing methods are being identified and
investigated.

The design and use of a measurement-driven
process model has been educational. Everyone has
become more aware of the structure of the

development cycle and the characteristics that are
related to quality program code. Through SPA, we
continually evaluate our processes, making
changes and improvements as necessary. Through
the application of metrics, we expect the software
development process to be more efficient, more
predictable, and we expect higher quality products
that are easier to maintain and reuse.

Our initial research used only a core metric set that
focused primarily on code. There is much more to
be done. We are working on correlating code
metrics with discrepancy and change data in order
to develop a baseline and tolerances that indicate
the quality and reliability. Other code metrics, such
as physical source statements, logical source
statements and nesting levels are being investigated
(Rombach, 1990). In the future we expect to use
code metrics for certifying code before it is placed
in the reuse library. We are also researching
applicable metrics for other phases of the life cycle.
The goal is to develop acceptability ranges for
software metrics, at all phases of the life cycle,
similar to those currently existing for hardware.

7 Acknowledgments

NASA's Software Engineering Laboratory (SEL)
provided early and important mechanisms for
understanding and managing the data collection
process. Papers from the SEL, that appeared as
early as 1977, have contributed greatly to the field
of software engineering. We gratefully
acknowledge the help of SEL personnel in getting
the work cited in this paper started and in providing
the data collection forms used in the first phase of
these analyses.

8 References

Baumert, John H., & McWhitney, Mark S.
(1992). Software measures and capability
maturitymodel.SoftwareEngineeringInstitute,
CarnegieMellon University, CMU/SEI-92-TR-
25.

Booch, Grady, (1991). Object orienteddesign.
Benjamin/Cummings Publishing Company,
Inc., Menlo Park,CA..

SoftwareEngineeringLaboratory,NASA Goddard
SpaceFlight Center (1987). Data collection
procedures for the rehosted SEL database.
SoftwareEngineeringLaboratorySeries,SEL-
87-008.

IEEE Standardof SoftwareProductivity Metrics,
IEEE-Std1045-1992,January,1993.

IEEE Standardglossaryof SoftwareEngineering
Terms,IEEE-Std-610.12-1990.

Mills, Harlan D., & Dyson, Peter B., (1990).
Using metrics to quantify development,IEEE
Software,March.

McCabe, Thomas J., (1976). A complexity
measure. IEEE Transactions on Software

Engineering, Vol. SE-2(4), Dec.

Putnam, Lawrence H., & Myers, Warren (1992).
Measures for excellence: reliable software on

time, within budget. Prentice-Hall, Inc.,

Englewood Cliffs, NJ.

Rombach, H. Dieter (1990). Design
measurement: some lessons learned. IEEE

Software, 7(2) March.

UX-Metrics, Set Laboratories Incorporated,

Oregon, 1990.

1008

